5 research outputs found

    Clustering cliques for graph-based summarization of the biomedical research literature

    Get PDF
    BACKGROUND: Graph-based notions are increasingly used in biomedical data mining and knowledge discovery tasks. In this paper, we present a clique-clustering method to automatically summarize graphs of semantic predications produced from PubMed citations (titles and abstracts). RESULTS: SemRep is used to extract semantic predications from the citations returned by a PubMed search. Cliques were identified from frequently occurring predications with highly connected arguments filtered by degree centrality. Themes contained in the summary were identified with a hierarchical clustering algorithm based on common arguments shared among cliques. The validity of the clusters in the summaries produced was compared to the Silhouette-generated baseline for cohesion, separation and overall validity. The theme labels were also compared to a reference standard produced with major MeSH headings. CONCLUSIONS: For 11 topics in the testing data set, the overall validity of clusters from the system summary was 10% better than the baseline (43% versus 33%). While compared to the reference standard from MeSH headings, the results for recall, precision and F-score were 0.64, 0.65, and 0.65 respectively

    A New Incremental Algorithm for Overlapped Clustering

    No full text

    Typical testors generation based on an evolutionary algorithm

    No full text
    Typical testors are useful for both feature selection and feature relevance determination in supervised classification problems. However, reported algorithms that address the problem of finding the set of all typical testors have exponential complexity. In this paper, we propose to adapt an evolutionary method, the Hill-Climbing algorithm, with an acceleration operator in mutation process, to address this problem in polinomial time. Experimental results with the method proposed are presented and compared, in efficiency, with other methods, namely, Genetic Algorithms (GA) and Univariate Marginal Distribution Algorithm (UMDA). © 2011 Springer-Verlag
    corecore